Micron Automata Processor

A New Approach to Information Analysis

Paul Dlugosch
Director – Automata Processor Technology
Micron Technology, Inc.
Micron at a Glance

Founded: October 1978, Boise, Idaho

FY2013 Net Sales: $9.0 billion

NASDAQ Symbol: MU

Employees: ~30,000 worldwide

Products: We offer one of the world’s broadest memory portfolios, including: DRAM components and modules, SSDs, NAND, and NOR, as well as other innovative memory technologies, packaging solutions and semiconductor systems

Markets We Serve: Micron's products are designed to meet the diverse needs of computing, networking, server, consumer, mobile, automotive, and industrial applications

Patents: ~26,000
Expansive Product Offering

DRAM Families
- SDRAM
- DDR
- DDR2
- DDR3
- DDR4
- RLDRAM®
- Mobile LPDRAM
- PSRAM/
 - CellularRAM
- Hybrid Memory Cube

DRAM Modules
- FBDIMM
- RDIMM
- VLP RDIMM
- VLP UDIMM
- UDIMM
- SODIMM
- SORDIMM
- Mini-DIMM
- VLP Mini-DIMM
- LRDIMM
- NVDIMM

Bare Die
- Multiple Technologies

NAND Flash
- TLC, MLC, SLC
- Serial NAND
- Enterprise NAND

Solid State Drives
- Client SSD
- Enterprise SATA
- Enterprise SAS
- Enterprise PCIe

Managed NAND
- MCP
- eMMC™
- ClearNAND Flash
- Embedded USB

NOR Flash
- Parallel NOR
- Serial NOR
Customers demand high performance for analytics.
- Increasing levels of parallelism drive complexity in system architectures.
- Massive scale requires aggressive power targets.
A Repetitive Cycle...

The Consistent Message

“Memory is the bottleneck!”

“We need faster memory!”

CPU Vendor | System OEM

The Response

“Sure, we can do that!”

Memory Industry

Innovations in memory interfaces...

1970: Broadside Addressing | Multiplexed Addressing | Extended Data Out

Fast Page Mode

Synchronous DRAM

Today

... have been critical to improving performance.
Hybrid Memory Cube: A New Level of Performance

Revolutionary Approach to Break Through the “Memory Wall”
- Evolutionary DRAM roadmaps hit limitations of bandwidth and power efficiency
- Micron introduces a new class of memory: Hybrid Memory Cube
- Unique combination of DRAMs on Logic smashes through the memory wall

Unparalleled Performance
- Provides 15X the bandwidth of a DDR3 module
- Uses 70% less energy per bit than existing memory technologies
- Reduces the memory footprint by nearly 90% compared to today’s RDIMMs

Key Applications
- Data packet processing, data packet buffering, and storage applications
- Enterprise and computing applications

How did we do it?
- Micron-designed logic controller
- High speed link to CPU
- Massively parallel “Through Silicon Via” connection to DRAM

April 22, 2014 | ©2014 Micron Technology, Inc.
The modern relationship between processor and memory was conceived to avoid complications associated with physical reconfiguration of ENIAC.

Since the mid 1940’s, most computer systems have been built on this basic architectural concept. The role of memory in systems was firmly cast.

Micron concluded that important advancements can be made if we challenge this deeply rooted historical concept.
Micron Innovation: Automata Processor

Advanced Architecture Unleashes Massive Parallelism and new Era in Data Processing

- Unique solution to ‘Big Data’ problems that require data analysis
- Massively parallel memory based design (~50,000 vertex processors).
- Scalable for consumer through super computer applications.
- Allows processing performance to scale in capacity.
- Deployable in single chip, module and multi-module applications.
- Programmable architecture via Micron developed Software Dev Kit
- Custom developed Automata development language (ANML) allows full exploitation of chip parallelism and data processing capabilities.

Key Characteristics & Program Status

- Physical Interface: DDR3
- Bus Width: \(\times 8 \)
- State Cache: 512 vectors on chip
- Symbol input rate: 128M Symbols/sec
- Power: 4 W Max (all blocks active)
- Sample Availability: Mid - 2014
- SDK Status: V1.4 available now
- Market Stage: Evaluating early market initiatives

Application Examples

- Network Security*
 - Deep Packet Inspection
 - QoS
- Data Analytics
- Bioinformatics*
- Medical Diagnostics
- Video/Image analytics*
 * Application development in progress

Cyber-security Graph Pattern
Micron Automata Processor: Silicon

Key Device Parameters:
- 129.3 mm² (12.15 × 10.64)
- 128M Symbols/Second
- 49,152 State Transition Elements
- 24,576 STE Max Automata Size
- 4W TPD (Estimated)
- 512 Entry State Cache
- 6,144 STE Match Capacity (Max)
- 6 Independent Result Regions
- Event Vector Division (2, 4, 8, 16)
- 15.4mm × 12.0 mm 144b FPBGA

Sample availability targeted for Q3, 2014.
Market Opportunity

- **GPGPU**
- **CPU**

Axes:
- **Unstructured Random Comparison**
- **Structured Mathematical Floating Point**
- **High Parallelism**
- **Low Parallelism**
Problems Aligned with the Automata Processor

Applications requiring **deep analysis** of **data streams** containing **spatial** and **temporal** information are often impacted by the **memory wall** and will benefit from the **processing efficiency** and **parallelism** of the Automata Processor.

Network Security:
- Millions of patterns
- Real-time results
- Unstructured data

Bioinformatics:
- Large operands
- Complex patterns
- Unstructured data

Video Analytics:
- Highly parallel operation
- Real-time results
- Unstructured data

Data Analytics:
- Highly parallel operation
- Real-time results
- Unstructured data
Automata Processor: The Fabric

Match Elements:
- State Transition Element (STE)
- Determine match of input symbol
- Can support high in/out degree

Aggregation Elements:
- Counter Element
- Combinatorial Element
STE Activation (Routing) Parallelism

STE Array (Block Architecture)

- STE’s may route to any other STE within it’s Block.
- STE’s may route to other STE’s in adjacent blocks.
- STE’s may route (activate) multiple STE’s simultaneously.

Routing lines effectively replace the overhead associated with a traditional random access to system memory.
Row Access results in **one** word being retrieved from memory.

Row Access results in **49,152** match & route operations.
Unstructured Data – Unstructured Processor
ROW Access is Fully Utilized on Every Cycle

“Micron’s 48-chip evaluation board scales this bandwidth to a ridiculous 38TB/s, which enables Automata to solve problems that traditional processors cannot.”
Automata Processor Workbench

AP Workbench: Hierarchical Design & Macro Support
Parallelization of automatons requires no special consideration by the user. Each automaton operates independently upon the input data stream.
Design Methodologies: ANML, REGEX, Scripting, Full Custom

Application: Bioinformatics
Function: Fuzzy Matcher

Application: Cyber security
Function: DoS Attack Apache

Compiler Input: Scripted ANML
Compiler Input: REGEX

Automata Processor SDK supports a variety of input methods.
Automata Processor: Scalability

- Configurable for speed vs. capacity.
- Host controller must manage streams.
Automata Processor: Support & Tools

PCIE Development Board
- Industry Standard PCIe bus interface
- Capacity for up to 48 AP’s
- Large FPGA capacity
- DDR3 for local storage

Software Development Kit
AP Optimization, loading & debugging tools & compiler.

Workbench Tool
Converts schematic automata to Micron ANML description language.
A Fundamental Breakthrough

CPU Block Diagram

Human Neocortex

CPU Program

Automata Processor Program