### **National Strategic Computing Initiative**



#### Irene Qualters Division Director, ACI Computer & Information Science & Engineering

September 1, 2015



# **National Strategic Computing Initiative**

**Executive Order Signed July 29, 2015** 

- National
  - "Whole of government" approach
  - Public/private partnership with industry and academia
- Strategic
  - Leverage beyond individual programs
  - Long time horizon (decade or more)
- Computing
  - HPC as advanced, capable computing technology
  - Multiple styles of computing and all necessary infrastructure
  - Scope includes everything necessary for a fully integrated capability
- Initiative
  - Above baseline effort
  - Link and lift efforts

Enhance U.S. strategic advantage in HPC for security, economic competitiveness, and scientific discovery





# NSCI Executive Order calls on NSF to play a leadership role

Scientific discovery advances

The broader HPC ecosystem for scientific discovery

Workforce development

Co-lead with DOD and DOE



# **The Government's Role in NSCI**

### DOD + DOE

- Capable exascale program
- Analytic computing to support missions: science and national security

### NSF

- Scientific discovery
- Broader HPC ecosystem
- Workforce Development
- IARPA + NIST
  - Future computing technologies
- NASA, FBI, NIH, DHS, NOAA
  - Deployment within their mission contexts





# **NSCI Objectives**

- Accelerate delivery of a capable exascale computing system (hardware, software) to deliver approximately 100X the performance of current 10PF systems across a range of applications reflecting government needs
- 2. Increase coherence between technology base used for modeling and simulation and that used for data analytic computing.
- **3.** Establish, over the next 15 years, a viable path forward for future HPC systems in the post Moore's Law ...
- 4. Increase the capacity and capability of an enduring national HPC ecosystem, employing a holistic approach ... networking, workflow, downward scaling, foundational algorithms and software, and workforce development.
- 5. Develop an enduring public-private partnership to assure that the benefits .. are transferred to the U.S. commercial, government, and academic sectors



## **Next Steps for NSCI**

- Executive Council
  - Co-chaired by the Directors of OSTP and of OMB
  - Membership representing participating agencies to be designated by the Director of OSTP
- Implementation Plan
  - To be established within 90 days (of July 29, 2015)
  - And annually thereafter for 5 years



# 3. Establish, over the next 15 years, a viable path forward for future HPC systems in the post Moore's Law era



#### Happening now

- Multi-core and many-core processors
- Domain-specific integrated circuits
- •Energy-aware computing
- Hierarchical memories
- High-speed Interconnects

#### **Longer term**

- •Usable parallelism, concurrency, and scalability
- Resiliency at scale
- •Decreased power consumption
- •Architectures that reduce data movement

- New materials (e.g., carbon nano-tubes, graphene-based devices)
- Non-charge transfer devices (e.g., electron spin)
- •Bio, nano, and quantum devices

NSF Role: Support foundational research (leadership by ENG, CISE, MPS, and BIO)



#### 2. Increase coherence between technology base used for modeling and simulation and that used for data analytic computing



#### Modeling and Simulation

- Multi-scale
- Multi-physics
- Multi-resolution
- Multidisciplinary
- Coupled models

#### Data Science

- Data Assimilation
- Visualization
- Image Analysis
- Data Compression
- Data Analytics

NSF Role: Support foundational research and research infrastructure within and across all disciplines (across all NSF directorates)

### Data Science : Emerging .....Inherently multidisciplinary



Domain Knowledge



### **Aspirations for Convergence**





#### **Computational Intensity**



**2.** Increase synergy between technology base used for modeling and simulation and that used for data analytic computing

4. Increase the capacity and capability of an enduring national HPC ecosystem, employing a holistic approach ... networking, workflow, downward scaling, foundational algorithms and software, and workforce development.

- NSF Role:
  - Research Priorities:
    - Computationally and Data Intensive Science and Engineering Frontiers
  - Discovery-motivated computational investments:
    - Cyberinfrastructure: people, software, technology
    - Collaborations likely: interagency, public sector, industry, international
    - Re-use, agility, sustainability
- Directorates: All



## The conduct of science is changing

Revolution in the scientific workflow: many interfaces to shared CI services



NSF embraces an expansive view of cyberinfrastructure motivated by scientific priorities, the changing conduct of science and informed by technology advances





### NSF role in NSCI: Enduring Computational Ecosystem for Advancing Science and Engineering





# **NSF Implementation**

- Community Input
  - NSF Advisory Committee(s) engagement
    - NSF-Wide Cyberinfrastructure Advisory Committee (ACCI)
    - Directorate ACs: MPS, CISE, ...
  - National Academies Study completion
- NSF-wide activity
  - CI Council
    - ACI, Heads of Directorates
  - Cross-Directorate Working Group
    - MPS & CISE/ACI Co-chair/leads





### **Discussion, Questions?**

