From Personalized Medicine to Clean Energy Production:

Accelerating Multicellular Biological System Simulation Using BioCellion

Seunghwa Kang
seunghwa.kang@pnnl.gov
Interactions drive multicellular biological system behavior

“The complex interaction between the biofilm pathogens and the host inflammatory response modifies the environment, and successful biofilm parasites respond accordingly by altering their phenotype to the biofilm mode of growth.”

“At the heart of any attempt to commercially exploit microalgae is the need to identify the optimal combination of microalgal strain and growth conditions.”

“A major difficulty with in situ bioremediation by using transgenic bacteria is the unpredictable end result on account of various environmental factors that may interfere.”
“Nearly half of women who had lumpectomies for breast cancer had second operations they may not have needed because surgeons have been unable to agree on guidelines for the most common operation for breast cancer, a new study finds. It also hints that some women who might benefit from further surgery may be missing out on it.”

Simulation Components

► Individual Cell Behavior
► Cell-cell interaction
 1. Physical contact
 2. Via diffusible molecules
► Cell-environment interaction
 1. Molecule consumption and production
 2. Limit or promote cell movement
 3. Affect molecule transport
 4. …
Two principal modeling approaches

- **Population based approach**
 - Computationally inexpensive (with coarse grid spacing)
 - Difficult to model individual cell level events
 - Inappropriate for multicellular systems with high spatial heterogeneity

- **Discrete agent based approach**
 - Computationally demanding to model large biological systems (> 10^6 cells)
As currently implemented, a single 2D simulation takes less than 0.5 hours on a 32bit 1.56 GB 1.44 GHz dual core Dell Workstation. We expect that a 3D simulation will take no longer than 24 hours on a supercomputer when a proper parallel implementation is used.
Major Challenge and BioCellion Approach

► No established mathematical models
 - Models vary widely and change over time.
► Users provide model specifics, Biocellion addresses the high-performance parallel computing challenges
 - Model specifics: rules to determine individual cell behavior, evaluate pairwise interactions, set PDE parameters, …
 - Computing and programming challenges: nested irregular parallelism, multiple time and spatial scales, partitioning, load balancing, adaptive mesh refinement & multi-grid, multi-step implicit method, octtree partitioning, …
Evaluate direct physico-mechanical interaction between a cell pair.
Strong inter-population cooperation leads to partner intermixing in microbial communities

Babak Momeni¹*, Kristen A Briley², Matthew W Fields², Wenyong Shou¹*

- Reducing grid spacing from 50 µm → 5 µm
 - $10^3 \times 10^2$ (the original implementation uses the explicit Euler method) times increase in computing
 - BioCellion addresses the computing challenge with adaptive mesh refinement, implicit method, and high-performance computing
Modeling Microbial Dynamics in Heterogeneous Environments: Growth on Soil Carbon Sources

Haluk Resat · Vanessa Bailey · Lee Ann McCue · Allan Konopka

Before BioCellion

After BioCellion

BioCellion enables scaling from micro-pore to soil aggregate of aggregate!!!
Yeast colony and micro tumor growth

Courtesy of Nick Flann, Brian Benson, and Alex Wells
Modeling bacteria systems using thermodynamics principles

- Simulate individual cells with thermodynamics principles (Stochastic ODEs solved using Monte Carlo methods)
- Single cell simulation → Multi-cell Simulation using BioCellion

Building prototype skin models

Courtesy of Ilya Shmulevich and Ryan Tasseff
Future roadmap

- Mapping a single cell to multiple discrete agents
- Flow modeling
 - Water flow in soil aggregate
 - Blood flow modeling (in microvasculature)
- Providing various solvers for single cell modeling
Conclusions

- Computational complexity of discrete agent based modeling should **NOT** be a major bottleneck in understanding multicellular biological systems with help from the HPC community.
- BioCellion 1.0 release in the near future
Collaborators

William Cannon

Ilya Shmulevich

Ryan Tasseff

Simon Kahan

Nick Flann

Jason McDermott

Haluk Resat

Babak Momeni

Wenying Shou

Brian Benson