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Era of Mobile

Age of Context

https://medium.com/crossing-the-pond/into-the-

age-of-context-f0aed15171d7

Age of Context - Robert Scoble and Shel Israel
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Context can be powerful, but…

Age of Context

Contextual 
interpolation

Age of 
Insight

Insightful 
extrapolation
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Cray’s Vision:
The Fusion of Supercomputing and Big & Fast Data

Modeling The World
Cray Supercomputers solving “grand challenges” in science, engineering and analytics  
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Cray’s Unique Strengths in Supercomputing + 
Analytics
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Productivity 
based ROI

Customer 
Community

Systems by 
Design

The Cray community of 

customers and partners are 

the most demanding and 

enabling.  Allows Cray to 

push the boundaries of 

scalable systems.

We design our systems 

for production 

computing and 

analytics at scale.

Cray takes the productive 

applications view of ROI:
• Match system designs to the 

applications

• Enable highly productive 

programming environments.

• Build solutions that are 

flexible and upgradeable.

• Lower TCO than commodity 

clusters and cloud for data-

intensive applications



The Alan Turing Institute

● UK national institute for data sciences
● to break new boundaries in how we use big 

data in a fast moving, competitive world

● Joint venture: founder Universities and 
EPSRC
● Cambridge, Edinburgh, Oxford, UCL, Warwick

● Launch partners
● Lloyds Register Foundation, GCHQ and Cray

● UK Government investment in “Eight 
Great Technologies”

● https://turing.ac.uk/
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“We don’t just want insights, we 
want actionable insights.” 

Peter Grindrod, University of Oxford



Human Genome Assembly – Under 9 Minutes on 
“Edison”

● Cray XC30 “Edison” reduces the assembly 
time of a complete human genome to 8.4 
minutes

● A UPC modified version of the Meraculous
code (Hip-Mer) was 170x faster.

● Eliminating the analytics back-log and 
fueling the drive towards precision 
medicine

● Cray’s CX30 with Aries interconnect 
coupled with high memory bandwidth and 
memory on each node  provided the I/O 
bandwidth required for genome assembly 
work

The end-to-end scaling of the team’s HipMer genome assembler approach 

showing the human genome scalability on Edison on the left and the more 

complex wheat genome on the right (both axes are in log scale).

References: http://www.theplatform.net/2015/08/20/supercomputer-force-knocks-human-genome-assembly-under-9-minutes/

http://gauss.cs.ucsb.edu/~aydin/sc15_genome.pdf
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“Using our HipMer technology 
enables for the first time assembly 
throughput to exceed the capability 

of all the world's sequencers” 

HipMer: an Etreme-Scale DeNovo Genome Assembler
Georganas, Buluc, Chapman, Hofmeyr, Aluru, Egan, Oliker, 

Rokshar and Yelick



Magnus (CX30) Whitefly study at IVEC
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● Dr. Laura Boykin
● funded by the Gates 

Foundation and a TED 
Fellowship.

● Awarded time on “Magnus,” 
Her team is marrying 
genomics, supercomputing 
and evolutionary history to 
help African farmers 
develop management 
strategies and breed pest-
resistant cropsThey are battling a species complex 

of at least 34 morphologically 

indistinguishable species. 
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“It’s a massive problem. I’m one of 
15 principal investigators working 
on a new project whose mission is 

to give farmers a cassava plant 
that’s resistant to the viruses and 

the whiteflies.” 

Dr. Laura Boykin
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Protein Folding – Mixed Simulation and Analytics

● Focuses on how protein folding happens

● Model possible paths to folded end-state

● Temporal resolution matters, but drives data size

Markov State 
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673555/pdf/nihms428070.pdf

Curr Opin Struct Biol. 2013 February ; 23(1): 58–65. doi:10.1016/j.sbi.2012.11.002.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673555/pdf/nihms428070.pdf
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Protein Folding – Mixed Simulation and Analytics
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Automated classification in protein databases

(a) (b) (c)

Figure 1: One conformation of the villin HP-35 protein (a); part of its distance matrix using only its backbone atoms in

the conformation (b); and three eigenvectors and the associated eigenvalues capturing and synthesizing the conformation

geometry (c).

I I I . METHODOLOGY

Our method involves three steps. Given a trajectory

composed of frames generated in a distributed fashion

and containing up to 400 consecutively folding protein

conformations, our method first extracts relevant features

from each conformation into a local metadata representation.

In our case, the relevant feature is the local knowledge

on the geometric conformation of the protein structure.

Second, the method maps each conformation to either a

meta-stable or a transition stage using the local knowledge

on the conformational features of the structures in the frame

only. Finally, the method rebuilds the global knowledge

(i.e., stages and conformation space explored) of the given

trajectories through a reduction operation.

A. Extraction of conformational features

Our method extracts the shape of each single folding

conformation into a metadata representation that preserves

the relevant information contained in the data but reduces the

overall data size. Rather than working with the atom coordi-

nates of the complete protein molecule, our method first rep-

resents each protein conformation using an N ⇤N distance

matrix (DM), where N is the number of backbone carbon

atoms in the protein (i.e., the alpha carbon of each amino

acid). More specifically, the matrix contains the distance

from each backbone atom to the other backbone atoms in the

same protein conformation. Figure 1(a) shows an example

of a folding conformation for the protein HP-35 NleNle

(i.e., a variant of the villin headpiece subdomain) taken

from folding trajectories generated by Folding@Home [9].

Figure 1(b) shows part of the corresponding distance matrix

representing the same conformation in a different format.

The representation of each protein conformation is trans-

formed from a set of 3⇤M floating point numbers (where

3 identifies the coordinates in the Cartesian space of each

atom, and M is the number of atoms in the entire protein,

with M > N ) to a N ⇤N matrix of floating point numbers.

Once the method has mapped each conformation to a

distance matrix, it applies classical multidimensional scaling

(MDS) to each distance matrix separately. MDS reduces the

N ⇤N symmetric distance matrix into a lower dimensional

matrix while maintaining the original information on the

protein conformation (i.e., the distance of each backbone

atom to all the other backbone atoms). Because of simplicity

and ease of human interpretation, we applied MDS to reduce

the data dimensionality to a N ⇤3 matrix. MDS also

generates a set of three N ⇤1 column vectors (q1, q2, q3),

and each eigenvector comes with its eigenvalue (λ1, λ2, λ3).

Each eigenvalue represents the amount of variations in the

data associated to the corresponding eigenvector [10]. In

this case we use the information contained in the leading

eigenvalues to summarize the conformational features of the

protein at a given time in the folding process. Thus, we

are able to reduce the protein dimensionality into a single

point in the 3-D Euclidean space. In other words, the three

eigenvalues represent the variance or curves of the backbone

atoms with respect to each other in the protein’s alpha-

helices or beta-sheets. Figure 1(c) shows the three eigenval-

ues and eigenvectors obtained for the matrix in Figure 1(b).

The figure also shows the reduced representation of the

protein conformation into the 3-D point. In summary, the

method maps each protein conformation from 3⇤M atom’s

coordinates to 3⇤1 floating point numbers. It performs the

mapping for each conformation in a frame separately from

the other mapped conformations in a concurrent manner.

B. Classification of meta-stable and transition stages

As the folding evolves, the protein changes between

meta-stable and transition stages. Each frame composing a

trajectory may contain up to 400 protein conformations that

can be clustered into one or more of these two stage cate-

In-situ analysis of folds –

Dimensionality reduction using PCA & MDS
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Thomas J. Lane, Diwakar Shukla, Kyle A. Beauchamp, and Vijay S. 
Pande



Astronomy

Physics Light Sources

Genomics
Climate

DOE Facilities are Facing a Data Deluge
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Cray/AMPLab/LBL collaboration



Top Data Analytics Problems for NERSC users

1. Generative Model for the Visible Universe
● Joint Inference across telescope images

2. Pattern Detection for Climate
● Scalable Deep Learning on Cori

3. Stephen Hawking Device
● Machine Learning for speech prosthetic

4. Google Maps for BioImaging
● Semantic databases

5. Genome Assembly for Wheat
● Graph Analytics
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Data Characteristics

Science 

Domain

Data Source Data Characteristics Data Volume Analysis

Challenge

Cosmology Multiple 

Telescopes

Noisy, multi-band,

artifacts

O(100) TB Data Fusion,

Inference

HEP Anti-Neutrino 

detectors

Noisy, artifacts, spatio-

temporal

O(10) TB Pattern/Anomaly 

Detection

BioImaging Mass-spec

instruments

Noisy, artifacts, multi-

modal

O(10) TB Dim. Reduction

Clustering, Pattern 

Detection

Genomics Sequencers Missing data, errors O(1-10) TB Clustering, Pattern 

Detection

Neuroscience Neural Recorders Spatio-temporal, high 

dimensional, noisy

O(1) TB Dim. Reduction, 

Pattern Detection

Climate Satellites, 

Simulation o/p

Multi-variate, spatio-

temporal

O(10) TB Pattern/Anomaly 

Detection
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“Current HPC machines are optimized for 
scientific simulations, arithmetic-intensive 

workloads, and regular computation, whereas 
data-analytics applications requires hardware 

optimized for bandwidth, throughput, 
concurrency and all-to-all communication.” 

Tumeo & Feo (IEEE Computer, Aug)
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“The age of insight will require hardware and 
software infrastructures and ecosystems 

optimized for data analytic modeling & data-
intensive simulations, including regular and 

irregular data access, high bandwidth, 
throughput, concurrency, all-to-all 
communication and scalability.”


