HPC + D + A = HPDA?

Barry Bolding, PhD SVP & Chief Strategy Officer Cray Inc. bbolding@cray.com

Era of Mobile

Age of Context

https://medium.com/crossing-the-pond/into-theage-of-context-f0aed15171d7 Age of Context - Robert Scoble and Shel Israel

Context can be powerful, but...

Contextual interpolation

Insightful extrapolation

Cray's Vision: The Fusion of Supercomputing and Big & Fast Data

Modeling The World

Cray Supercomputers solving "grand challenges" in science, engineering and analytics

Cray's Unique Strengths in Supercomputing + Analytics

The Cray community of customers and partners are the most demanding and enabling. Allows Cray to push the boundaries of scalable systems.

Cray takes the productive applications view of ROI:

- Match system designs to the applications
- Enable highly productive programming environments.
- Build solutions that are flexible and upgradeable.
- Lower TCO than commodity clusters and cloud for dataintensive applications

The Alan Turing Institute

UK national institute for data sciences

- to break new boundaries in how we use big data in a fast moving, competitive world
- Joint venture: founder Universities and EPSRC
 - Cambridge, Edinburgh, Oxford, UCL, Warwick

Launch partners

- Lloyds Register Foundation, GCHQ and Cray
- UK Government investment in "Eight Great Technologies"
- https://turing.ac.uk/

HM Government

Eight Great Technologies

Big Data

Transforming the data revolution into new products and services

"We don't just want insights, we want actionable insights." Peter Grindrod, University of Oxford

Human Genome Assembly – Under 9 Minutes on "Edison"

The end-to-end scaling of the team's HipMer genome assembler approach showing the human genome scalability on Edison on the left and the more complex wheat genome on the right (both axes are in log scale).

- Cray XC30 "Edison" reduces the assembly time of a complete human genome to 8.4 minutes
- A UPC modified version of the Meraculous code (Hip-Mer) was 170x faster.
- Eliminating the analytics back-log and fueling the drive towards precision medicine
- Cray's CX30 with Aries interconnect coupled with high memory bandwidth and memory on each node provided the I/O bandwidth required for genome assembly work

References: <u>http://www.theplatform.net/2015/08/20/supercomputer-force-knocks-human-genome-assembly-under-9-minutes/</u> http://gauss.cs.ucsb.edu/~aydin/sc15_genome.pdf "Using our HipMer technology enables for the first time assembly throughput to exceed the capability of all the world's sequencers"

HipMer: an Etreme-Scale DeNovo Genome Assembler Georganas, Buluc, Chapman, Hofmeyr, Aluru, Egan, Oliker, Rokshar and Yelick

Magnus (CX30) Whitefly study at IVEC

They are battling a species complex of at least 34 morphologically indistinguishable species.

- Dr. Laura Boykin
 - funded by the Gates Foundation and a TED Fellowship.
- Awarded time on "Magnus," Her team is marrying genomics, supercomputing and evolutionary history to help African farmers develop management strategies and breed pestresistant crops

"It's a massive problem. I'm one of 15 principal investigators working on a new project whose mission is to give farmers a cassava plant that's resistant to the viruses and the whiteflies."

Dr. Laura Boykin

Protein Folding – Mixed Simulation and Analytics

<u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673555/pdf/nihms428070.pdf</u> Curr Opin Struct Biol. 2013 February ; 23(1): 58–65. doi:10.1016/j.sbi.2012.11.002.

Copyright 2015 Cray Inc.

Protein Folding – Mixed Simulation and Analytics

Enabling in-situ data analysis for large protein-folding trajectory datasets

Figure 1: One conformation of the villin HP-35 protein (a); part of its distance matrix using only its backbone atoms in the conformation (b); and three eigenvectors and the associated eigenvalues capturing and synthesizing the conformation geometry (c).

Abstract-This paper presents a one-pass, distributed method that enables in-situ data analysis for large proteinfolding trajectory datasets by executing sufficiently fast, avoiding moving trajectory data, and limiting the memory usage.

In-situ analysis of folds -**Dimensionality reduction using PCA & MDS**

STRUCTURAL CLASSIFICATION OF PROTEINS

Automated classification in protein databases

Thomas J. Lane, Diwakar Shukla, Kyle A. Beauchamp, and Vijay S. Pande

DOE Facilities are Facing a Data Deluge

Cray/AMPLab/LBL collaboration

Top Data Analytics Problems for NERSC users

1. Generative Model for the Visible Universe

Joint Inference across telescope images

2. Pattern Detection for Climate

Scalable Deep Learning on Cori

3. Stephen Hawking Device

• Machine Learning for speech prosthetic

4. Google Maps for Biolmaging

Semantic databases

5. Genome Assembly for Wheat

Graph Analytics

Data Characteristics

Science Domain	Data Source	Data Characteristics	Data Volume	Analysis Challenge
Cosmology	Multiple Telescopes	Noisy, multi-band, artifacts	O(100) TB	Data Fusion, Inference
HEP	Anti-Neutrino detectors	Noisy, artifacts, spatio- temporal	O(10) TB	Pattern/Anomaly Detection
Biolmaging	Mass-spec instruments	Noisy, artifacts, multi- modal	O(10) TB	Dim. Reduction Clustering, Pattern Detection
Genomics	Sequencers	Missing data, errors	O(1-10) TB	Clustering, Pattern Detection
Neuroscience	Neural Recorders	Spatio-temporal, high dimensional, noisy	O(1) TB	Dim. Reduction, Pattern Detection
Climate	Satellites, Simulation o/p	Multi-variate, spatio- temporal	O(10) TB	Pattern/Anomaly Detection

"Current HPC machines are optimized for scientific simulations, arithmetic-intensive workloads, and regular computation, whereas data-analytics applications requires hardware optimized for bandwidth, throughput, concurrency and all-to-all communication."

Tumeo & Feo (IEEE Computer, Aug)

"The age of insight will require hardware and software infrastructures and ecosystems optimized for data analytic modeling & dataintensive simulations, including regular and irregular data access, high bandwidth, throughput, concurrency, all-to-all communication and scalability."

