

The Data Sciences Group at NASA Ames

Data Mining Research and Development (R&D) for application to NASA problems (Aeronautics, Earth Science, Space Exploration, Space Science)

Group Members

Ilya Avrekh Kamalika Das, Ph.D.

Dave Iverson

Vijay Janakiraman, Ph.D.

Rodney Martin, Ph.D.

Bryan Matthews

Nikunj Oza, Ph.D.

Veronica Phillips

John Stutz

Hamed Valizadegan, Ph.D.

+ summer students

Funding Sources

- NASA Science: AIST, CMAC programs
- NASA Aeronautics: ATD, SMART-NAS
- NASA Engineering and Safety Center
- NASA Human Space Exploration
- Aero seedling funds, Center Innovation
 Fund
- Non-NASA: DARPA, DoD

What is All This Stuff?

What is All This Stuff?

Collaborators

- Universities: Basic research in data sciences, domains
- Industry: Data sources, baseline methods, domain expertise
- NASA: Apply basic research, develop for NASA's needs, domain expertise, funding programs
- Other government: funding, domain expertise, data sources

Data Sciences

- Data are produced by system operating in an environment
- Data Sciences: Reverse-engineer system and environment
- Understand how system really works, correct system model errors, understand true impact of environment

Example NASA Machine Learning Problems

- Aeronautics
 - Anomaly Detection
 - Precursor Identification
 - text mining
- Earth Science
 - Filling in missing measurements
 - anomaly detection
 - teleconnections
 - climate understanding
- Space Science: Kepler planet candidates
- Space Exploration
 - system health management
 - astronaut health

Data Mining for Earth Science Examples

Virtual Sensors

- Regression to fill in missing or noisy sensor values, anomaly detection
- Estimated MODIS channel 6 for older instrument (AVHRR)

Estimating MODIS channel 6 (useful for distinguishing clouds over snow and ice covered regions).

Data Mining for Earth Science Examples

Top few outliers (yellow pins) identified by distributed 1-class SVM-based outlier detection algorithm in the California MODIS data.

Distributed Algorithms For Earth Science

- For large scale data where centralization is impractical
- Developed distributed 1-class SVM for anomaly detection.
 - 99% of the accuracy of centralized algorithm
 - 1% communication overhead running time (relative to embarrassingly parallel runs)

The Anatomy of an Aviation Safety Incident

Current Methods of Finding Issues

Exceedance-Based Methods

- Known anomalies/safety issues
- Conditions over 2-3 variables (e.g., speed > 250 knots, altitude = 1000 ft, landing)
- Cannot identify unknown anomalies
- Low false positive rate, high false negative (missed detection) rate.

Data-Driven Methods

- DISCOVER anomalies by
 - learning statistical properties of the data
 - finding which data points do not fit (e.g., far away, low probability)
- Complementary to existing methods
 - Lower false negative (missed detection) rate
 - Higher false positive rate (identified points/flights unusual, but not always operationally significant)
- Data-driven methods -> insights -> modification of exceedance detection

Operationally Normal

Statistically Anomalous

Operationally Anomalous

Statistically Normal

False Alarms

Unknown Problems

Known Problems

Not to scale

High Speed Go-Around

- Overshoots Extended Runway
 Centerline (ERC)
 by over 1 SM
- Over 250 Kts @2500 Ft.
 - Angle of intercept > 40°
 - Overshoots 2nd approach

Four V's of Big Data

➤ Volume¹

- Radar Tracks: 47 facilities (1 year)
 - > ~423 GB (Compressed)
 - > ~3.2 TB (CSV)
- Weather and Forecast (Entire NAS)
 - CIWS ~2.8 TB

➤ Velocity

- Radar Tracks: 47 Facilities
 - ~35 GB/month (compressed).
 - ~268 GB/month (uncompressed)
- Weather and Forecast (Entire NAS)
 - ➤ CIWS ~233 GB/month

Veracity

- Data drop outs
- Duplicate tracks
- > Track ending in mid air
- > Reused flight identifiers

Variety

- Numerical (continuous/binary)
- Weather (forecast/actual)
- Radar/Airport meta data
- ATC Voice
- ASRS text reports (Pilot/Controller)

¹But not always the right kind!

NASA Earth eXChange (NEX)

NEX Software View

How do we get the Word Out?

DASHlink

disseminate. collaborate. innovate. https://dashlink.ndc.nasa.gov/

DASHlink is a collaborative website designed to promote:

- Sustainability
- Reproducibility
- Dissemination
- Community building

Users can create profiles

- Share papers, upload and download open source algorithms
- Find NASA data sets.

Machine Learning Workshop - 2017

Peter Norvig

August 29-31, 2017 NASA Ames Research Center **Building 3**

Moffett Field, CA

SPEAKERS

- Peter Norvig, Keynote Speaker, Google
- Vipin Kumar, Keynote Speaker, Univ of Minnesota
- Bryan Matthews, NASA Ames
- Vijay Janakiraman, NASA Ames
- Deepak Kulkarni, NASA Ames
- Shawn Wolfe, NASA Ames
- Johann Schumann, NASA Ames
- Cliff Young, Google
- Guy Katz, Stanford University
- o Damalika Das, NASA Ames
- o Sangram Ganguly, NASA Armes
- Physish Mehrotre, NASA Ames
- Keil Goebel, NVASA Armes

TOPICS

- Machine Learning for Aeronautics
- Machine Learning for Human Space Exploration

Vipin Kumar

- Program Synthesis for Efficient Machine Learning Algorithms
- Human Machine Interaction
- Machine Learning for Earth Science
- Machine Learning for Astrophysics and Planetary Seignee
- o Supercomputing and Machine Learning

PREPARING FOR THE FUTURE OF ARTIFICIAL INTELLIGENCE

Executive Office of the President National Science and Technology Council Committee on Technology

October 2016

THE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT STRATEGIC PLAN

National Science and Technology Council

Networking and Information Technology Research and Development Subcommittee

October 2016

Ongoing and Future Work

- So far: desktop, HPC. offline, desktop
- Ongoing
 - in-time for online monitoring
 - Learning to improve analytics
- Future
 - Usability, portability for analytics deployments
 - embedded systems, autonomous systems
 - Use all platforms, in best way possible, on the fly

Thank You!

Contact: nikunj.c.oza@nasa.gov

"I'm a little surprised. With such extensive experience in predictive analysis, you should've known we wouldn't hire you."