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The Data Sciences Group at NASA Ames 
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Nikunj Oza, Ph.D.
Veronica Phillips
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Team Members are NASA Employees, Contractors, and Students.

Funding Sources

• NASA Science: AIST, CMAC programs

• NASA Aeronautics: ATD, SMART-NAS

• NASA Engineering and Safety Center

• NASA Human Space Exploration

• Aero seedling funds, Center Innovation 

Fund

• Non-NASA: DARPA, DoD

Data Mining Research and Development (R&D) for application to NASA 
problems (Aeronautics, Earth Science, Space Exploration, Space Science)
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Collaborators

• Universities: Basic research in data sciences, 

domains

• Industry: Data sources, baseline methods, domain 

expertise

• NASA: Apply basic research, develop for NASA’s 

needs, domain expertise, funding programs

• Other government: funding, domain expertise, 

data sources



Data Sciences

System Environment

Data

• Data are produced by system operating in an environment

• Data Sciences: Reverse-engineer system and environment

• Understand how system really works, correct system model 
errors, understand true impact of environment



Example NASA Machine Learning Problems

• Aeronautics
– Anomaly Detection
– Precursor Identification
– text mining

• Earth Science
– Filling in missing measurements
– anomaly detection
– teleconnections
– climate understanding

• Space Science: Kepler planet candidates
• Space Exploration

– system health management
– astronaut health



Data Mining for Earth Science Examples

Estimating MODIS channel 6 (useful for 
distinguishing clouds over snow and ice 

covered regions). 

• Virtual Sensors
• Regression to fill in missing or noisy 

sensor values, anomaly detection
• Estimated MODIS channel 6 for older 

instrument (AVHRR)

modelMODIS 1,2,20,31,32 MODIS 6

modelAVHRR 1,2,3,4,5 “AVHRR 6”

Model Training

Model Testing



Data Mining for Earth Science Examples

Distributed Algorithms For Earth Science
• For large scale data where centralization is impractical

• Developed distributed 1-class SVM for anomaly detection.
• 99% of the accuracy of centralized algorithm

• 1% communication overhead running time (relative to 
embarrassingly parallel runs)

Top few outliers (yellow pins) identified by 
distributed 1-class SVM-based outlier detection 

algorithm in the California MODIS data.



The Anatomy of an Aviation Safety Incident
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From Irving Statler, Aviation Safety Monitoring and Modeling Project



Current Methods of Finding Issues

Exceedance-Based Methods

• Known anomalies/safety issues

• Conditions over 2-3 variables (e.g., speed > 250 knots, 
altitude = 1000 ft, landing)

• Cannot identify unknown anomalies

• Low false positive rate, high false negative (missed 
detection) rate.



Data-Driven Methods

• DISCOVER anomalies by
– learning statistical properties of the 

data
– finding which data points do not fit 

(e.g., far away, low probability)

• Complementary to existing 
methods
– Lower false negative (missed 

detection) rate
– Higher false positive rate (identified 

points/flights unusual, but not 
always operationally significant)

• Data-driven methods -> 
insights -> modification of 
exceedance detection Known 

Problems

Unknown 
Problems

False Alarms

Operationally 
Normal Statistically 

Normal

Operationally 
Anomalous

Statistically 
Anomalous

Not to scale



High Speed Go-Around

• Overshoots Extended Runway 
Centerline (ERC) 
by over 1 SM

• Over 250 Kts @2500 Ft.

• Angle of intercept > 40°

• Overshoots 2nd approach



Four V’s of Big Data

Amazing 
Algorithm

➢Volume1

➢ Radar Tracks: 47 facilities (1 
year)
➢ ~423 GB (Compressed) 
➢ ~3.2 TB (CSV)

➢ Weather and Forecast 
(Entire NAS)
➢ CIWS ~2.8 TB

➢Velocity
➢ Radar Tracks: 47 Facilities 

➢ ~35 GB/month 
(compressed). 

➢ ~268 GB/month 
(uncompressed)

➢ Weather and Forecast 
(Entire NAS)
➢ CIWS ~233 GB/month

➢Veracity
➢ Data drop outs
➢ Duplicate tracks
➢ Track ending in mid air
➢ Reused flight identifiers

➢Variety
➢ Numerical 

(continuous/binary)
➢ Weather (forecast/actual)
➢ Radar/Airport meta data
➢ ATC Voice
➢ ASRS text reports 

(Pilot/Controller)

Intuitive
Reports

1But not always the right kind!



NASA Earth eXChange (NEX)



NEX Software View



DASHlink
disseminate. collaborate. innovate.

https://dashlink.ndc.nasa.gov/

DASHlink is a collaborative 
website designed to 
promote:

• Sustainability

• Reproducibility

• Dissemination

• Community building

Users can create profiles

• Share papers, upload 
and download open source 
algorithms

• Find NASA data sets.

How do we get the Word Out?







Ongoing and Future Work

• So far: desktop, HPC. offline, desktop

• Ongoing

– in-time for online monitoring

– Learning to improve analytics

• Future

– Usability, portability for analytics deployments

– embedded systems, autonomous systems

– Use all platforms, in best way possible, on the 

fly



Thank You!

Contact: nikunj.c.oza@nasa.gov


