

Characterization and Benchmarking of Deep Learning

Natalia Vassilieva, PhD Sr. Research Manager

Deep learning applications

Vision

- Search & information extraction
- Security/Video surveillance
- Self-driving cars
- Medical imaging
- Robotics

Speech

- Interactive voice response (IVR) systems
- Voice interfaces (Mobile, Cars, Gaming, Home)
- Security (speaker identification)
- Health care
- Simultaneous interpretation

Text

- Search and ranking
- Sentiment analysis
- Machine translation
- Question answering

Other

- Recommendation engines
- Advertising
- Fraud detection
- Al challenges
- Drug discovery
- Sensor data analysis
- Diagnostic support

Is Deep Learning a "universal algorithm"?

Is Deep Learning a "universal algorithm"?

Types of artificial neural networks

Topology to fit data characteristics

Applications break down

One size does NOT fit all

Application

Data type

Data size

Model (topology of artificial neural network):

- How many layers
- How many neurons per layer
- Connections between neurons (types of layers)

Deep learning ecosystem

Keras

How to pick the right hardware/software stack?

Popular models

AlexNet CNN 60,965,224 233 MB GoogleNet CNN 6,998,552 27 MB VGG-16 CNN 138,357,544 528 MB	GFLOPs (forward pass)	
	0.7	
VGG-16 CNN 138.357.5// 528.MB	1.6	
VGG 10 CNN 130,337,344 320 IVID	15.5	
VGG-19 CNN 143,667,240 548 MB	19.6	
ResNet50 CNN 25,610,269 98 MB	3.9	
ResNet101 CNN 44,654,608 170 MB	7.6	
ResNet152 CNN 60,344,387 230 MB	11.3	
Eng Acoustic Model RNN 34,678,784 132 MB	0.035	
TextCNN CNN 151,690 0.6 MB	0.009	

Popular models

Name	Туре	Model size (# params)	Model size (MB)	GFLOPs (forward pass) 0.7	
AlexNet	CNN	60,965,224	233 MB		
GoogleNet	gleNet CNN		27 MB	1.6	
VGG-16	CNN	138,357,544	528 MB	15.5	
VGG-19	CNN	143,667,240	548 MB	19.6	
ResNet50 CNN		25,610,269	98 MB	3.9	
ResNet101	CNN	44,654,608	170 MB	7.6	
ResNet152	CNN	60,344,387	230 MB	11.3	
Eng Acoustic Model RNN		34,678,784	132 MB	0.035	
TextCNN CNN		151,690	0.6 MB	0.009	

Compute requirements

Name	Type	Model size (# params)	Model size (MB)	GFLOPs (forward pass)
ResNet152	CNN	60,344,387	230 MB	11.3

Training data: 14M images (ImageNet)

FLOPs per epoch: $3 * 11.3 * 10^9 * 14 * 10^6 \approx 5 * 10^{17}$

1 epoch per hour: ~140 TFLOPS

Today's hardware:

Google TPU2: 180 TFLOPS Tensor ops

NVIDIA Tesla V100: 15 TFLOPS SP (30 TFLOPS FP16, 120 TFLOPS Tensor ops), 12 GB memory

NVIDIA Tesla P100: 10.6 TFLOPS SP, 16 GB memory

NVIDIA Tesla K40: 4.29 TFLOPS SP, 12 GB memory

NVIDIA Tesla K80: 5.6 TFLOPS SP (8.74 TFLOPS SP with GPU boost), 24 GB memory

INTEL Xeon Phi: 2.4 TFLOPS SP

Distributed training

Which configuration is better?

Deep Learning Cookbook helps to pick the right HW/SW stack

Benchmarking Suite

Benchmarking scripts
Reference models
Performance metrics

- 11 reference models
- 8 frameworks
- 8 hardware systems

Performance and scalability models

- Machine learning (SVR)
 to predict performance of
 core operations
- Analytical communication models
- Analytical models for overall performance

- Scalability prediction
- Optimal HW/SW configuration for a given workload
- Reference solutions

	Data			Hardware				Software	Time (hours)
•	Size Epochs Model		Model	Server Apollo 6500		PU NVIDIA P100		Framework TensorFlow	
	100000000	10	ResNet101	Count 8	Cluster s	size	Interconnect IB	Batch 32(weak)	120.2

Selected observations and tips

- Larger models are easier to scale (such as ResNet and VGG)
 - A single GPU can hold only small batches (the rest of memory is occupied by a model)
- Fast interconnect is more important for less compute-intensive models (FC)
- A rule of thumb: 2 CPU threads per GPU
- -A rule of thumb: RAM = 2 x GPU memory x number of GPUs

Thank you

Natalia Vassilieva nvassilieva@hpe.com